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PLANE STRESS EQUATIONS

FOR THE VON MISES–SCHLEICHER YIELD CRITERION

UDC 539.374A. M. Kovrizhnykh

Systems of equations for plastic stresses and velocities based on the von Mises–Schleicher criterion are
obtained for plane stresses. The regions of ellipticity and hyperbolicity of these systems are found,
and the limiting stresses and fracture directions identified with the characteristics of the velocity
field equations are determined. The results agree well with experimental data for plastic and brittle
materials.
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Metal plasticity theory widely uses the Houber–von Mises criterion, according to which the shear–stress
intensity in a material takes a constant value upon reaching the yield point. Simple mathematical formulation,
energy substantiation, and experimental verification have shown advantages of this criterion over the other criterions
for plastic metals [1, 2]. For brittle metals and rocks, however, the Coulomb–Mohr strength criterion [2–8] is the
most widely used.

The generalization of this criterion to brittle materials proposed by Schleicher and elaborated later by Nádai
states that for plastic flow or fracture of solids, the shear-stress intensity is a certain function of the mean normal
stress [1, 2]. For the von Mises–Schleicher criterion, plastic strains can be determined using the associated and
nonassociated models [3–6].

For an arbitrary stress state, the von Mises–Schleicher criterion has the form

T + βσ = k, (1)

where k is the adhesion, β is the internal-friction coefficient, σ = (σx + σy + σz)/3 is the mean normal stress, and
T = [(σx − σz)2 + (σx − σy)2 + (σy − σz)2 + 6τ2

xy + 6τ2
xz + 6τ2

yz]
1/2/

√
6 is the shear-stress intensity.

In the space of the principal normal stresses σ1, σ2, and σ3, the von Mises–Schleicher yield (strength) criterion
is interpreted as a circular cone whose vertex lies on the hydrostatic axis. We denote the coordinate of the vertex
of the cone by σ0 (σ1 = σ2 = σ3 = σ0). If k and β are constants in the plastic region, they can be determined
from results of two experiments, for example, in tension and compression. We denote the tensile, compressive, and
shear yield stresses (ultimate stresses) by σt, σc, and τ0, respectively. Given the experimental values of σt and σc,
from (1) we obtain

β =
√

3
σc − σt

σc + σt
, k =

2√
3

σcσt

σc + σt
, τ0 = k, σ0 =

2
3

σcσt

σc − σt
. (2)

To predict fracture direction with better accuracy, one should take into account that for the ultimate stress,
the material characteristics k and β can differ from their values in the plastic region and depend on the normal
stress σ.
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For plane stresses with σ2 = σy = 0, the von Mises–Schleicher yield (strength) criterion is written in the
principal stress axes as

σ2
1 − σ1σ3 + σ2

3 = (
√

3k − β(σ1 + σ3)/
√

3 )2. (3)

For convenience, we introduce auxiliary coordinates s and t (Fig. 1) related to the bisectrices of the first and
second quadrants as follows:

s = (σ1 + σ3)/
√

2, t = (σ3 − σ1)/
√

2.

In these coordinates, condition (3) is simplified substantially:

(1− 4β2/3)s2 + 3 t2 + 4
√

2 kβs = 6k2. (4)

The adhesion k can be defined using (2) in terms of the ultimate tensile and compressive stresses (σt and σc)
or σt and the friction coefficient β. Below, we define all strength parameters in terms of σt and β:

k = τ0 =
√

3 + β

3
σt, σc =

√
3 + β√
3− β

σt.

Equation (4) describes a second-order curve whose right vertex has the coordinates

σ1 = σ3 =
√

3 + β√
3 + 2β

σt.

The shape of curve (4) is specified by the value of the internal-friction coefficient β. If β 6
√

3/2, we have
the equation of an ellipse

(s− s0)/a2 + t2/b2 = 1, (5)

tilted at an angle of 45◦ to the axes σ1 and σ3 (see Fig. 1). The center and semiaxes of the ellipse are given by

s0 = −2
√

2β(
√

3 + β)
3− 4β2

σt, a =
√

6 (
√

3 + β)
3− 4β2

σt, b =

√
2
3

√
3 + β√

3− 4β2
σt.

For β = 0, we obtain the well-known Houber–von Mises ellipse with semiaxes a =
√

2σt and b =
√

2/3σt

centered at the coordinate origin [9]. In Fig. 1, solid curves 2 and 3 show the von Mises and von Mises–Schleicher
ellipses, respectively; here and below, dashed curve 1 shows the Coulomb–Mohr hexagon.

For β =
√

3/2, from (3) we obtain σc = 3σt. In this case, Eq. (4) is the equation of a parabola

t2 +
√

2σt s = 3σ2
t /2. (6)

The coordinates of the parabola vertex determined for t = 0 are σ1 = σ3 = 3σt/4. Obviously, the vertex of the
parabola is closer to the coordinate origin than the vertex of the ellipse, which is inconsistent with the Coulomb–
Mohr criterion (Fig. 2).

For β >
√

3/2, Eq. (4) becomes the equation of a hyperbola

(s− s0)/a2 − t2/b2 = 1, (7)

where

s0 =
2
√

2β(
√

3 + β)
4β2 − 3

σt, a =
√

6 (
√

3 + β)
4β2 − 3

σt, b =

√
2
3

√
3 + β√

4β2 − 3
σt.

The equations of the asymptotes of hyperbola (7) are given by

t = ±(2/3)
√
β2 − 3/4 (s− s0).

For β =
√

3, the coordinates of the hyperbola vertex are σ1 = σ3 = 2σt/3, the semiaxes are a = b = 2
√

2σt/3,
and the center of the hyperbola lies at the center σ1 = σ3 = 4σt/3. The equations of the asymptotes become
σ1 = 4σt/3 and σ3 = 4σt/3. In Fig. 2, the von Mises–Schleicher parabola and hyperbola are shown by solid curves 2
and 3, respectively.

We now consider Coffin’s experimental data on gray cast iron [2] (Fig. 3) and those of Cornet and Grassi [2]
on modified cast iron (Fig. 4). In Fig. 3, the open points refer to the results of Coffin and the solid curves refer to
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Fig. 1. Von Mises–Schleicher ellipse in the plane of the stresses σ1 and σ3.

Fig. 2. Von Mises–Schleicher parabola and hyperbola in the plane σ1, σ3.
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Fig. 3. Comparison of calculation results with Coffin’s experimental data for gray cast iron.

Fig. 4. Comparison of calculation results with the results of Cornet and Grassi for modified cast iron.

the von Mises–Schleicher criterion; in the first, second, and fourth quadrants, condition (4) is a parabola (curve 2)
for β =

√
3/2 ≈ 0.866 and σc = 3σt, and in the third quadrant, it is an ellipse (curve 3) for β = 0.373. Based on

the experimental data of Coffin, we assume that for uniaxial compression, the quantity β is equal to the average
value for the third and fourth quadrants; then β = 0.62. Below, this value of β is used to determine the direction
of the compression fracture plane.

Cornet and Grassi performed experiments on specimens of gray and modified cast iron. The results for gray
cast iron are close to the data of Coffin and are not given here. The experimental results for modified cast iron are
shown in Fig. 4 and also agree well with condition (4) for β = 0.742.
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The above results show that compared to the Coulomb–Mohr criterion, the von Mises–Schleicher criterion
agrees better with experimental results on fracture stresses. This is most clearly seen from Fig. 3, which gives
experimental data for the third quadrant. This important finding has not been reported in the literature, and the
Coulomb–Mohr strength criterion, in its various modifications, [2] has been the most extensively studied and used
in papers on plastic deformation and fracture of brittle materials.

Following [9], we introduce an angle ω that characterizes the type of stress state. Then, for the principal
normal stresses, we can write

σ1 = σ +
2√
3
T cos

(
ω − π

3

)
, σ2 = σ − 2√

3
T cosω, σ3 = σ +

2√
3
T cos

(
ω +

π

3

)
, (8)

where ω is defined by the formula

cos 3ω = −(3
√

3 I3)/(2T 3), I3 = sxsysz − sxτ
2
yz − syτ

2
xz − syτ

2
xy + 2τxyτxzτyz.

Here sx, sy, and sz are the diagonal components of the stress deviator and si = σi− σ (i = x, y, z). Let us consider
some types of stress state. For example, we have ω = π/6 for biaxial tension 2σ1 = σ3 (generalized shear), ω = π/3
for tension, ω = π/2 for pure shear σ1 = −σ3, and ω = 2π/3 for compression.

For plane stresses (in direction 2), we obtain σ from (8) and then determine T from Eq. (1):

σ =
2√
3
T cosω, T =

√
3 k√

3 + 2β cosω
. (9)

With allowance for (9), formulas (8) become

σ1 = 2T cos (ω − π/6), σ3 = 2T cos (ω + π/6). (10)

We assume that the y axis coincides with the second principal direction of the stress tensor and the x axis
makes an angle θ with the first principal direction, for which tan 2θ = 2τxz/(σx − σz). Next, using (10) and the
well-known formulas, we express the stresses in terms of the functions ω and θ in an arbitrary coordinate system:(

σx
σz

)
= T (

√
3 cosω ± sinω cos 2θ), τxz = T sinω sin 2θ. (11)

Replacing the expression for T in (11) by its value from (9), we obtain(
σx
σz

)
=
√

3 k(
√

3 cosω ± sinω cos 2θ)√
3 + 2β cosω

, τxz =
√

3 k sinω sin 2θ√
3 + 2β cosω

.

Substituting σx, σz, and τxz into the equilibrium equation and differentiating, we obtain(√
3 sinω cos 2θ − cosω − 2β√

3

)∂ω
∂x

+
√

3 sinω sin 2θ
∂ω

∂z
− 2 sinω

(
1 +

2β√
3

cosω
)∂θ
∂z

= 0,

√
3 sinω sin 2θ

∂ω

∂x
−

(√
3 sinω cos 2θ + cosω +

2β√
3

)∂ω
∂z

+ 2 sinω
(
1 +

2β√
3

cosω
)∂θ
∂x

= 0.
(12)

These partial differential equations for β = 0 are identical to the equations for plastic materials [9], and in
the region of hyperbolicity of these equations, the characteristic lines are given by the equations

dz

dx
= tan (θ − ψ),

dz

dx
= tan (θ + ψ), (13)

where ψ is the angle between the first characteristic and the σ1 axis:

ψ = ψσ =
π

2
− 1

2
arccos

(cot ω√
3

+
2β

3 sinω

)
. (14)

In the notation sinϕ = β/
√

3, the hyperbolicity condition for system (12) is written as

cos2 ω + sinϕ cosω + sin2 ϕ− 3/4 < 0. (15)

Solving this inequality, we obtain

− cos (ϕ− π/6) < cosω < cos (ϕ+ π/6). (16)
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Generally, the angle ϕ varies from 0 to π/2, depending on brittleness of the material. We have ϕ = β = 0
for plastic metals, ϕ > π/6 for brittle materials, and ϕ = π/2 for cleavage failure. The hyperbolicity condition (16)
takes the simplest form if ϕ 6 π/6 or ϕ > π/6.

For ϕ 6 π/6, inequality (16) implies

ϕ+ π/6 < ω < ϕ+ 5π/6. (17)

For ϕ = β = 0, inequality (17) implies the hyperbolicity condition [9] in the form

π/6 < ω < 5π/6.

If the internal-friction angle ϕ increases from 0 to π/6, the right bound of the region of hyperbolicity increases
to π and the left bound to π/3. As a result, for ϕ = π/6 (β =

√
3/2), the hyperbolicity condition becomes

π/3 6 ω < π.

We now consider brittle materials for which ϕ > π/6. In this case, (16) implies the inequality

ϕ+ π/6 < ω < 7π/6− ϕ.

As the angle ϕ increases from π/6 to π/2, the right bound of this inequality decreases and the left bound increases
to the value ϕ = 2π/3, and for ϕ = π/2 (β =

√
3) and any angles ω, the differential equations (12) are elliptic.

Let the functions ω = ω(s) and θ = θ(s) be specified along a certain line x = x(s), y = y(s). The solutions of
the differential equations ω = ω(x, z) and θ = θ(x, z) form a certain surface (integral surface). The main question is
whether a certain integral surface can be drawn through a given line L (Cauchy problem). For the integral surface
passing through the line L, we write the obvious relations

∂ω

∂x
dx+

∂ω

∂z
dz = dω,

∂θ

∂x
dx+

∂θ

∂z
dz = dθ. (18)

Along L, Eqs. (12) and (18) form a system on inhomogeneous linear algebraic equations for the first partial
derivatives of the functions ω = ω(x, z) and θ = θ(x, z). If the line L is a characteristic of Eqs. (12), the derivatives
are determined ambiguously along this line and, hence, the determinant of the above-mentioned algebraic system
and the appropriate nominators in Cramer’s formulas vanish. Equating the determinant of the system to zero, we
arrive at the differential equations of the characteristic lines (13). Setting the nominators in Cramer’s formula equal
to zero, we obtain differential relations between unknown functions ω and θ that hold along the characteristics

±
√

3 Σ(ω)
2 sinω(

√
3 + 2β cosω)

dω − dθ = 0, (19)

where Σ(ω) =
√

3 sin2 ω − (cosω + 2β/
√

3)2.
We introduce a new function λ using the equations

dλ = −
√

3 Σ(ω)
2 sinω(

√
3 + 2β cosω)

dω, λ = −
√

3
2

ω∫
ωβ

Σ(ω)
2 sinω(

√
3 + 2β cosω)

dω. (20)

In these relations, ωβ = ϕ + π/6 and ϕ = arcsin (β/
√

3). If β = 0, then ωβ = π/6, which agrees with [9];
for β =

√
3/2, we obtain ωβ = π/3. Thus, system (12) has two families of Characteristics, for which the following

relations hold:
dz

dx
= tan (θ − ψ), θ − λ = const = ξ along the first line,

dz

dx
= tan (θ + ψ), θ + λ = const = η along the second line.

To derive and study the equations for the velocity field, we consider the dilatancy plastic model of [5, 6]
whose determining relations are represented as the result of shears over a finite number of slip systems [10]. Below,
we use the plane-stress relations of this model [10]:

ėx =
(Λ

3
+
sx

2T

)
Γ̇p, ėz =

(Λ
3

+
sz

2T

)
Γ̇p, γ̇xz =

τxz

T
Γ̇p, ėy =

(Λ
3

+
sy

2T

)
Γ̇p,
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Fig. 5. Fracture directions in 12KhN3A steel specimens.

where Λ is the dilatancy coefficient and Γ̇p is the intensity of the plastic shear strain rates. Eliminating the
parameter Γ̇p from these relations and substituting the stress-deviator components sx = T (cosω/

√
3 + sinω cos 2θ)

and sz = T (cosω/
√

3−sinω cos 2θ) derived from (11), we obtain the equations for the velocity-vector components vx

and vz

tan 2θ
∂vx

∂x
− ∂vz

∂x
− ∂vx

∂z
− tan 2θ

∂vz

∂z
= 0, (a cos 2θ − b) ∂vx

∂x
+ (a cos 2θ + b)

∂vz

∂z
= 0. (21)

Here a = sinω and b = 2Λ/3 + cosω/
√

3.
In the notation sinϕv = Λ/

√
3, where ϕv is the dilatancy angle, the hyperbolicity condition for system (21)

is written as
cos2 ω + sinϕv cosω + sin2 ϕv − 3/4 < 0. (22)

One can see from (22) that the hyperbolicity condition for the velocity field is identical to the condition for
stresses (15) and all subsequent inequalities for ϕv = ϕ.

The equations of the characteristics of system (21) are similar to Eqs. (13) in which one sets 2ψ = 2ψv

= π − arccos (b/a). Taking into account the results obtained previously, we write the expressions for the angles ψσ

and ψv which determine the directions of the characteristics for the stress and velocity fields:

ψσ =
π

2
− 1

2
arccos

(cot ω√
3

+
2β

3 sinω

)
, ψv =

π

2
− 1

2
arccos

(cot ω√
3

+
2Λ

3 sinω

)
. (23)

As follows from these formulas, for Λ = β (in the case of plastic flow associated with a von Mises–Schleicher
surface), the characteristics of the system of velocity equations are identical to the characteristics for stresses
since ψσ = ψv. Setting Λ = β = 0, we arrive at the results for plastic metals [9]. Since ω = π/3 for uniaxial
tension, substitution of this value into (23) yields ψσ = ψv ≈ 54.7◦, which agrees with experimental results for flat
specimens [1] and thin-walled cylinders made of 12KhN3A steel [11[ (Fig. 5).

For the values of vx and vz specified on the line L, as in the case of the m of equations for stresses, we
supplement Eqs. (21) by the differential relations

∂vx

∂x
dx+

∂vx

∂z
dz = dvx,

∂vz

∂x
dx+

∂vz

∂z
dz = dvz. (24)

Along L, Eqs. (21) and (24) form a system of inhomogeneous linear algebraic equations for the first partial
derivatives of the functions vx = vx(x, z) and vz = vz(x, z). If the line L is a characteristic of Eqs. (21), the
derivatives are determined ambiguously along the line and, hence, the determinant of the above-mentioned algebraic
system and the appropriate nominators in Cramer’s formulas vanish. Equating the determinant of the system to
zero, we arrive at the differential equations of the characteristics, which coincide with (13) for ψ = ψv. Setting the
nominators equal to zero, we obtain differential relations between unknown functions vx and vz that hold along
each characteristic:

dvx dx+ dvz dz = 0. (25)

899



Fig. 6. Fracture directions on limestone specimens.

Substitution of the equations of characteristics into this formula yields two relations for the velocities along
each characteristic. Let us derive these relations for the projections of the velocity vector u and v onto the tangents
to the characteristic lines of the first and second families. We denote the projections of the velocity onto the normals
to the first and second characteristics by un and vn, respectively. In view of the aforesaid, vx and vz are expressed
in terms of u and un:

vx = u cos θα − un sin θα, vz = u sin θα + un cos θα. (26)

Here θα = θ− ψv is the angle between the characteristic of the first family and the x axis. Similarly, vx and vz are
expressed in terms of v and vn:

vx = vn sin θβ + v cos θβ , vz = −vn cos θβ + v sin θβ . (27)

Here θβ = θα + 2ψv = θ + ψv is the angle between the characteristic of the second family and the x axis. Using
formulas (25)–(27) along each characteristic, we obtain

du− un dθα = 0, dv + vn dθα = 0. (28)

Equating the right sides of formulas (26) and (27), and solving the resulting system of equations for un and vn we
obtain

un = vcosec2ψ − u cot 2ψ, vn = ucosec2ψ − v cot 2ψ. (29)

Substitution of these values into (28) yields the following relations for the velocity field on the characteristics:

du− (vcosec2ψ − u cot 2ψ) dθα = 0 along the line α,

dv + (ucosec2ψ − v cot 2ψ) dθα = 0 along the line β.
(30)

Let us consider some particular cases. For 2ψ = π/2, Eqs. (30) become Geiringer’s relations for plane strains of
a rigid-plastic medium [9]; for 2ψ = π/2 + ϕ, where ϕ is the internal-friction angle, the equations for the velocity
components on the characteristics (30) become

du− (v secϕ+ u tan ϕ) dθα = 0 along the line α,

dv + (u secϕ+ v tan ϕ) dθα = 0 along the line β.

Shield [12] obtained these relations for the velocity field of a Coulomb–Mohr ideal rigid-plastic soil under
plane-strain conditions. The relations for plane stresses of a Levy–von Mises rigid-plastic incompressible material
[13] are another particular case of the equations on characteristics (30).

As noted above, ω = 2π/3 for uniaxial compression. In this case, using Coffin’s experimental data, we obtain
β = 0.62. Setting Λ = β and substituting these values into (23), we obtain ψσ = ψv ≈ 49◦. These results are in
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good agreement with the experiments of [14], in which cylindrical specimens of gray cast iron failed at an angle of
approximately 45◦.

It was found experimentally [2, 15] that compressive fracture of brittle rocks in the absence of friction at the
ends occurs over planes parallel to the compression direction, i.e., when ψv = π/2. This result follows from (23) for
Λ =

√
3. Figure 6 shows results of our previous experiments (at the Institute of Mining Science, Russian Academy

of Sciences) with cylindrical limestone specimens whose ends were lubricated with paraffin wax.
The above comparison of experimental and theoretical results for plastic and brittle solids shows that the

von Mises–Schleicher criterion adequately predicts the limiting stresses and fracture directions identified with the
velocity-field characteristics.
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